Search results for "Drawing effects"

showing 4 items of 4 documents

Effect of electron-withdrawing substituents on the electrophilicity of carbonyl carbons

2005

Indexación: Scopus The substituent effects on the carbonyl carbon atom for a series of twelve substituted phenyl acetates have been rationalized using a global electrophilicity index. This index is linearly correlated with the experimental reaction rate coefficients. We found that, in contrast to the proposed interpretation based on experimental 13C NMR chemical shifts and ground state destabilization calculations, the electrophilicity of carbonyl compounds increases due to the effect promoted by electron-withdrawing groups in these systems. https://www.sciencedirect.com/science/article/pii/S0040402004018046?via%3Dihub

Carbon atomChemistryChemical shiftOrganic ChemistrySubstituentcarbonyl derivativecarbonylCarbon-13 NMRcarbon nuclear magnetic resonancePhotochemistryDFT calculationsBiochemistryMedicinal chemistryParrReaction rateElectron-withdrawing effectschemistry.chemical_compoundElectronegativityDrug DiscoveryElectrophilePolar effectChemical Reactivityphenylacetic acid derivativeElectrophilicityGround state
researchProduct

Substituent effects in trans-p,p'-disubstituted azobenzenes: X-ray structures at 100 K and DFT-calculated structures.

2014

The crystal and molecular structures of twopara-substituted azobenzenes with π-electron-donating –NEt2and π-electron-withdrawing –COOEt groups are reported, along with the effects of the substituents on the aromaticity of the benzene ring. The deformation of the aromatic ring around the –NEt2group inN,N,N′,N′-tetraethyl-4,4′-(diazenediyl)dianiline, C20H28N4, (I), may be caused by steric hindrance and the π-electron-donating effects of the amine group. In this structure, one of the amine N atoms demonstrates clearsp2-hybridization and the other is slightly shifted from the plane of the surrounding atoms. The molecule of the second azobenzene, diethyl 4,4′-(diazenediyl)dibenzoate, C18H18N2O4,…

Steric effectscrystal structureChemistryStereochemistry4electron-donating effectsSubstituentAromaticityCrystal structureDFT calculationsCondensed Matter PhysicsInorganic ChemistryCrystalelectron-withdrawing effectsHOMA indexCrystallographychemistry.chemical_compoundMaterials Chemistry4'-(diazenediyl)dibenzoateAmine gas treatingDensity functional theoryPhysical and Theoretical Chemistryazo­benzenesBenzene4'-(diazene­diyl)dianilineActa crystallographica. Section C, Structural chemistry
researchProduct

X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions

2011

International audience; We report an experimental study based on confocal microscopy luminescence (CML) and electron paramagnetic resonance (EPR) measurements to investigate the effects of the X-ray (from 50 krad to 200 Mrad) on three specific multistep Ge doped fibers obtained from the same preform by changing some of the drawing conditions (tension and speed). CML data show that, both before and after the irradiation, Germanium Lone Pair Center (GLPC) concentrations are similarly distributed along the diameters of the three fibers and they are partially reduced by irradiation. The irradiation induces also the Non Bridging Oxygen Hole Center (NBOHC) investigated by CML and other paramagnet…

Optical fiberMaterials scienceSilica fiberDrawing effectsAnalytical chemistryRadiation effectschemistry.chemical_elementGermaniumlaw.inventionNuclear magnetic resonancelawMaterials ChemistryOptical fibersPoint defectsIrradiationFiberElectron paramagnetic resonance[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]fiber; silica; X-ray irradiation; Ge-dopingX-ray irradiationCondensed Matter PhysicsCrystallographic defectElectronic Optical and Magnetic MaterialsGe-dopingchemistrysilicaCeramics and CompositesLuminescencefiber
researchProduct

Substituent effects in nitro derivatives of carbazoles investigated by comparison of low-temperature crystallographic studies with density functional…

2014

The crystal structure of 9H-carbazole, C12H9N, (I), has been redetermined at low temperature for use as a reference structure in a comparative study with the structures of 1-nitro-9H-carbazole, C12H8N2O2, (II), and 9-nitrocarbazole, C12H8N2O2, (III). The molecule of (I) has crystallographically imposed mirror symmetry (Z′ = 0.5). All three solid-state structures are slightly nonplanar, the dihedral angles between the planes of the arene and pyrrole rings ranging from 0.40 (7)° in (III) to 1.82 (18)° in (II). Nevertheless, a density functional theory (DFT) study predicts completely planar conformations for the isolated molecules. To estimate the influence of nitro-group substitution on aroma…

crystal structuremolecular electronicsSubstituentStackingElectronsbiological activityCrystal structureDihedral angleCrystallography X-RayDFT calculationsInorganic Chemistrychemistry.chemical_compoundDelocalized electronHOMA indexMaterials ChemistryPhysical and Theoretical ChemistryMolecular StructureHydrogen bondTemperatureHydrogen BondingAromaticityNitro CompoundsCondensed Matter PhysicsCrystallographycarbazoleselectron-withdrawing effectschemistryQuantum TheoryDensity functional theoryActa Crystallographica Section C-Structural Chemistry
researchProduct